
I

(J~b ;L_

L\BRARY USE ONLY
NUWC-NPT TM 942006

\M~4-200'
upy I

NAVAL UNDERSEA WARFARE CENTER DIVISION
NEWPORT, RI

IIIII II II I
94201il6 001N

TECHNICAL MEMORANDUM

NEW ATTACK SUBMARINE COMBAT SYSTEM DEVELOPMENT PROGRAM:

1 0 February 1994

SOFTWARE DEVELOPMENT REUSE TASK

!)) /')
Prepared by : A./~./ ~.;1-(/ic--J

Dani~ Juttelstad
Technology and Advanced Systems Division

Combat Control System Department

UBRARY USE ONLY ~";hc~(J
Systems Development Division

Combat Control Systems Departme t

Technology and Advanced Systems Division
Combat Control Systems Department

Dr~LASSIRED
NAVAL UNDEASEA WARFARE CENTER
DIVISION NEWPORT
NEWPORTiJ RHODE ISLAND 02841·1708

RET AN TO: TECHNICAL LIBRARY

Approved for public release; distribution is unlimited.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
10 FEB 1994

2. REPORT TYPE
Technical Memo

3. DATES COVERED
 10-02-1994 to 10-02-1994

4. TITLE AND SUBTITLE
New Attack Submarine Combat System Development Program :
Software Development Reuse Task

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Daniel Juttelstad; John McGarry; Steve Roodbeen

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Undersea Warfare Center Division,Newport,RI,02841

8. PERFORMING ORGANIZATION
REPORT NUMBER
TM 942006

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
NUWC2015

14. ABSTRACT
This memorandum provides an overview of the software reuse process for the Naval Undersea Warfare
Center Division Newport. The three primary areas of the process that are addressed are the domain
analysis, reuse software design metrics, and re-engineering software for reuse.

15. SUBJECT TERMS
software reuse

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

48

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

ABSTRACT

This memorandum provides an overview of the software reuse process for the Naval
Undersea Warfare Center Division Newport. The three primary areas of the process that are
addressed are the domain analysis, reuse software design metrics, and re-engineering software for
reuse.

ADMINISTRATIVE INFORMATION

This work was performed under Code 22 internal funding.

The authors of this memorandum are located at the Naval Undersea Warfare Center Division,
Newport, Rhode Island 02841-1708.

i/ii
Reverse Blank

TABLE OF CONTENTS

1. INTRODUCTION 1

1. 1 REUSE TASKS 1

1.2 DOMAIN MODEL AND DEFINITION 3

1.3 SOFTWARE CHARACTERIZATION 3

1.4 SOFTWARE RE-ENGINEERING4

1.5 REUSE REPOSITORY POPULATION 4

2. DOMAIN ENGINEERING 5

2.1 DESCRIPTION 5

2.2 DOMAIN ANALYSIS PROCESS 5

2.3 DOMAIN MODEL 9

3. REUSE INITIATIVE SOFTWARE DESIGN METRICS 10

3.1 DESCRIPTION 10

3.2 DESIGN METRICS PROCESS 10

3.3 DESIGN PRODUCT METRICS 12

4. RE-ENGINEERING 17

4.1 DESCRIPTION 17

4.2 RE-ENGINEERING PROCESS 17

4.3 NEXT GENERATION RE-ENGINEERING 23

5. CONCLUSIONS I ISSUES 24

5.1 ACCESS TO SYSTEM'EXPERTISE 24

5.2 INADEQUACY OF EXISTING PROCESSING RESOURCES 24

APPENDIX A: COMPONENT DESIGN SPECIFICATION TEMPLATE A-1

APPENDIX B: COMBAT SYSTEM DOMAIN SOFTWARE CATEGORIES B-1

APPENDIX C: SOFTWARE REUSE SPECIFIC SET OF ADA :METRICS C-1

lll

LIST OF FIGURES

Figure 1. Reuse Process 2

Figure 2 . Buhr 84 Notation 7

Figure 3. System Diagram 8

Figure 4. Package Geosit 8

Figure 5. Design for Reuse Metrics 11

Figure 6. SEE-Ada: Layers View 18

Figure 7. SEE-Ada: Graph View 19

IV

1. INTRODUCTION

1.1 REUSE TASKS

The Naval Undersea Warfare Center (NUWC) Division, Newport, Rhode Island, has initiated an
applied software development reuse task in support of the New SSN (NSSN) combat system
development program. The long term objective of this task is to define, characterize, and manage
reusable Ada and other programming language software components in support of the future
submarine combat system development process. As currently configured, the software reuse task
includes the following activities:

• Functional domain analysis and definition.

• Identification and procurement of available Ada software components that may
satisfy domain requirements.

• Characterization of the available software components m terms of reusable
software attributes.

• Software re-engineering of the available software components into reusable
software assets.

• Cataloging the reusable components into software repositories for easy access by
submarine combat system developers.

The reuse task comprises three distinct design and analysis processes that are necessary to realize
the objective of reuse . These processes are domain engineering, software design metrics, and re­
engineering. Detailed information for each is provided in the chapters that follow. Figure 1
depicts the overall approach to achieving the reuse task objectives. The boxes in the center of the
illustration are the functional areas of major concern to be addressed in this document.

Each functional area requires specific personnel expertise. These various expertice areas are
identified in the list in Figure 1. They are then mapped to the functional area boxes identifying
functional positions.. The number of times a functional position is identified in the figure, does
not correlate to the number of personnel positions. One person may be capable of performing
multiple functions or working multiple areas. The number pesonnel performing the work is more
a function of the size and complexity of the system being addressed.

The areas of expertice necessary to perform the functional positions are:

Software Quality Analyst: Responsible for defining the characterization of the software's
quality and applicability to the domain. The software quality analyst also develops the
evaluation criteria and acceptance quality level for the candidate software that is to be
integrated into the Reuse Repository.

Software Re-Engineer: Responsible for modifying legacy software to increase its quality
to the acceptance level for integration into the Reuse RepositoryConcerns ofthe Software
Re-Engineer include dealing with the legacy code existing in CMS-2, and Ada developed
utilizing structured development methods and evolving languages such as Ada 9x and
C++.

Domain Analyst: Responsible for evaluating candidate systems within the scope of the
domain. This process includes the definition of a domain architecture for use by the reuse
repository. The domain analyst is also responsible for defining the information
requirements for performing domain analysis and working with the system experts in
collecting this information.

Repository Librarian: Responsible for developing and maintammg the software
repository. This includes mapping the domain architecture and software reuse
components into the repository and assisting repository users in retrieving candidate
components for target systems.

System Experts: Individuals intimately familiar with the application systems, or portions
of systems, within the domain. Responsible for providing necessary information to the
domain analyst for developing the generic domain architecture. Responsible for evaluating
candidate reusable software for applicability to a target system.

Legacy
Software

Domain
Structure

And
Storage

A,C

AN/BSY-2
CCS MK-2

Ada
C++

CMS-2

8,D

A
8
c
D

Domain Engineer(s)
Domain SW Engineer(s)
Repository Maintenance Personnel
System Expert(s)/Developer(s)

Figure 1. Reuse Process

2

Software
Repository

Component
Retrieval

Target
System

c

c

D

Fiscal Year 1993 tasks focused on the implementation and first level verification of the initial
processes and tools required to support the software reuse activities, and technical interchange
with parallel system architecture, prototyping, and functional efforts.

1.2 DOMAIN MODEL AND DEFINITION

The objective of domain analysis is to develop a generic domain definition. This definition
consists of a set of software solutions that apply to the submarine combat system domain. The
results will identify the information to be captured from the development of the submarine combat
systems software, the software structure, and organization with the purpose of making existing
software components reusable. Future systems to be investigated include Combat Control System
(CCS) Mk 2 and AN/BSY -1, and AN/BSY -2.

The following functions are inherent in the process of the domain analysis effort:

• Identify information to be captured with respect to the design of the candidate
software components development.

• Categorize software components.

• Identify the generic software structure format.

1.3 SOFTWARE CHARACTERIZATION

The objective of the software characterization portion of the software reuse task was to develop
and validate an overall methodology for defining those characteristics and attributes which
support software reuse. This was accomplished by developing and validating specific product and
process metrics that correlated to a projected set of software "reuse" attributes.

The following functions are inherent to software characterization:

• Develop software characterization structure, to include a candidate list of "reuse"
attributes, associated metrics, and a defined measurement/characterization
methodology.

• Identify, procure, and implement automated process and product measurement
tools.

• Apply the structure and tools to sample software components.

• Validate the selected reuse attributes and metrics through prototype user feedback.

The initial characterization structure focused on automated product measures. Reusable software
component acceptance andre-engineering measures were also addressed.

3

1. 4 SOFTWARE RE-ENGINEERING

The objective of the software re-engineering portion of the software reuse task was to develop
and validate an overall methodology for the modification of existing Ada software components
into reusable components that meet the overall software reuse task requirements. This objective
was accomplished by the use and integration of state-of-the-art Ada development tools and
environments that support activities such as design recovery, redesign, documentation and Ada
code development, integration, and testing.

The software re-engineering task emphasized the following activities:

• Developing are-engineering model (i.e., methodology).

• Assembleing and integrating a software re-engineering development environment.

• Interpreting characterization data and software system requirement specifications,
as they apply to the re-engineering effort.

• Modifying the candidate Ada software components to fit the re-engineering model.

• Submiting the modified (re-engineered) component for re-characterization. If
re-engineered components meets or exceed characterization thresholds, enter the
component into the repository.

• Evaluate the overall effectiveness of the re-engineering environment and the
developed model and document the findings.

1.5 REUSE REPOSITORY POPULATION

The initial objective of the repository population effort is to provide an analysis of the candidate
software repository and domain analysis tools effectiveness.

The software repository population process maps the generic results of the domain analysis
software categories into the candidate repositories. The repository is to be populated by taking
the software components that have met the acceptance criteria as defined by the software
characterization task. This task was also responsible for obtaining and incorporating the
associated information with each software component as defined by the domain analysis and
definition task.

4

2. DOMAIN ENGINEERING

2.1 DESCRIPTION

Domain engineering differs from system engineering in that it deals with the scope of a common
application problem space rather than a specific application development. For the purposes of
NUWC, Newport, the domain of interest is the submarine combat system. The legacy systems
of interest are the AN/BSY-1, AN/BSY-2 and the CCS Mk 2.

Domain engineering addresses domain analysis, and domain design. The analysis portion
addresses evaluating the domain requirements and application designs to identify a common
domain model. This domain model represents the domain design. The domainan analysis
approach is to capture the existing system designs for use in implementation of a new domain
model. The domain design is to identify existing common software components across the
submarine combat system domain to be used in the development ofthe domain model.

2.2 DOMAIN ANALYSIS PROCESS

NUWC Newport Code 2221 has developed the approach to collect information about the legacy
systems by gathering information from the system experts and reverse engineering the software to
extract specific design information and rationale.

2.2.1 DOMAIN INQUIRIES

To gather information about the existing legacy systems NUWC Newport Code 2221 has
developed a template of information that is to be completed by the component developers, the
domain analysts, and the domain engineer for each candidate component. By collecting this data,
the domain engineer will have extensive information available for developing the domain model
and for eventual inclusions in the repository.

The template for the component design information is provided in appendix A. The format
identifies each paragraph for the information and who is responsible for providing or developing
the information. For the paragraphs where more than one individual is identified, the order they
are presented indicates their level of responsibility with the most responsible listed first. There are
three types of individuals identified:

Component Developer: A person with extensive familiarity with the existing component.
This may be the individual responsible for designing and coding the component or
maintaining it. These individuals are typically working on the existing systems being
evaluated.

Domain Engineer: A person familiar with domain engineering policies and techniques.
This individual is responsible for development of the domain model.

5

Domain Analyst: A person familiar with the characterization of reusable components.
This individual is capable of analyzing the component against existing evaluation criteria
and analyzing a component's suitability for reuse.

2.2.2 REVERSE ENGINEERING

The objective of reverse engineering in domain analysis is to extract legacy system design
information. This information is for performing domain analysis and developing the domain
model. It is also the first step in identifying candidate components, for re-engineering and reuse.
This process of reverse engineering is automated and provides information on software
architecture and design from legacy system source code. These diagrams can then be utilized to
evaluate software architecture and design of legacy systems and help define commonality across
the submarine combat system domain.

For FY93 the Submarine Architecture System Interface Design (SASID) project was used as the
prototype for developing and evaluating the reverse engineering capability. The SASID consists
of approximately 25K source lines of Ada. Using Object Maker by MARK V Systems as the
reverse engineering tool, Buhr 84 Diagrams were developed for the SASID Ada software. The
SASID software was in development at the time of the analysis and the diagrams do not represent
the SASID design since much of the software shown was stubbed out during the early
development. This, however, proved fully useful to the SASID development team as a means to
view and evaluate the state of the software at that particular phase of development.

Figure 2 shows examples of the BUHR 84 notation.

Object Maker creates a high level system diagram as depicted in figure 3. This diagram shows the
main components of the system. Each icon is balded since all may be expanded.

Figure 4 presents an expansion of package Geosit. Showing the packages and data that it
interfaces with. For example, Geosit Package- Updated_Geo_Model accesses the SPHERE
FIDU DATA BASE to obtain the identified data. Again, the bold borders indicate what packages
may be expanded for more detail.

SASID is a fairly simple system compared to a deployed combat system. Object Maker requires a
closure to obtain complete design information. Therefore, if the systems are large and complex it
requires extensive processing resources to generate reverse engineering diagrams as all the
software is required to be locally available while running the reverse engineering process.

6

L

(Package) __ ____..

Subprogram

'----/ _Task------1/

--------,
I I

1 Task_ Type /
L _______ .J

In/Out Parameter

I Task_Type_Expos~

~
Object_Ex pose (Objecy

\ Type_Expose)

~S~ype_Expos~
~~T.l.Pe l

:--- ~~~t~_P~

,..-- - -- - - -- - -- -,

I
I Generic_Paclage

I \...... _ _ ____ _ __ _ _ ../

~------ ---- -,

I Generic_ Subprogram I L _ ____ __ ___ _

...::o--.
1--...;._--'='--''----Basic_O.r+t-------~

In Parameter
- 0--+

~-_.:::--:----conditionai_.,C~arttll ____ _

Figure 2 . Bohr 84 Notation

7

I Mate I
OS_DATABASE

PDF

Geosit

Figure 3. System Diagram

::_--=--=-_£ -:]_AlE_~~rf._~-=--=-~ -:.
__ _j

Figure 4. Package Geosit

8

2.3 DOMAIN MODEL

The domain model is a logical representation of the system . The model provides system
developers of a target system with a view of the domain that allows them to identify and access
components within the repository that may be utilized in the target system. For the purposes of
the submarine domain model it will be necessary to have multiple representations or views of the
model. This requirement provides for queries of the repository for different purposes and
different states of the target system's development. The anticipated views for the model are
presently a categorization of software functions model, a domain architecture model, and an
object categorization model. Presently, work has been done to define a Software Functions
Model based on existing domain systems and functions. The present structure of the model is
given in appendix B.

The combat systems domain characterization model was developed using AN/BSY -2 design and
CCS Mk 2 design for the tactical and Next Generation Computer Resources (NGCR) standards
for the system software. This model provides for an Open Systems Architecture (OSA)
foundation.

9

3. REUSE INITIATIVE SOFTWARE DESIGN :METRICS

3. 1 DESCRIPTION

The objective of this section is to provide a preliminary list of software process and product
metrics pertinent to evaluating the design of reusable software components. This list has been
empirically derived from metrics applications experience on past development programs and from
projected software reuse characteristics and parameters.

The approach for identifying design for reuse metrics encompasses the following steps:

1. Selection of those software parameter measures that have in the past proven to be useful
in evaluating overall software design quality.

2. Mapping the defined measures to those process and product characteristics of software
design that appear to support the reuse of software objects.

3. Identification of new, more specific designs for reuse measures.

4. Validation ofthe identified reuse metrics through application in an actual software reuse
program.

The metrics addressed in this report are preliminary in nature and have not yet been validated.
Metrics conceptual definitions are emphasized, with specific parameters and measures for each
metric to be defined at a later date with respect to actual design processes. No specific reusability
model is assumed. As the actual validation environment is defined, the list will be revised based
upon the implemented reuse model and actual metrics applications feedback. In general, the
metrics relate to software developed using the Ada language, but separate efforts are underway to
expand coverage to include C, C++, and CMS-2.

3.2 DESIGN METRICS PROCESS

Figure 5 provides an overview of the preliminary list of design for reuse metrics. For discussion
purposes, the list is divided into both design process and product metrics. In actuality, the
process and product measures have been shown to be highly interrelated. Both are useful in
projecting overall software design quality, and both are anticipated to be applicable to specific
design for reuse objectives.

Design process metrics encompass those measures that characterize software design activities .
These measures are generally presented over time, and reflect the overall volatility, quality and
performance of the software design process.

Design product metrics are direct measures of the software design products at any given point in
time. These products include design specifications, program design instantiations, and preliminary

10

source code. The design product metrics focus on quality measures of the reusable software
component in terms of both interfaces and internal software design. They also include measures
of design traceability, use profile, and computer resource utilization of the reusable software
component within the software system.

DESIGN PROCESS METRICS

DESIGN

DESIGN VOLATILITY

DESIGN VALIDATION DENSITY

DESIGN PERFORMANCE

DESIGN FOR REUSE METRICS

I
DESIGN PRODlcT METRICS

DESIGN INTERFACE QUALITY

Interfilce Coupling

Modularity

Independence

Software Clarity

Completeness

Complexity

Redundancy

Consistency

DESIGN TRACEABILITY

COMPUTER RESOURCE

UflLIZA TION

DESIGN UNIT QUALITY

Modularity

Independence

Software Clarity

Completeness

Complexity

Consistency

Redundancy

USE PROFILE

Figure 5. Design for Reuse Metrics

The proposed design for reuse process metrics outlined in figure 5 are described as follows:

3.2.1 DESIGN DEFECTS

This metric category quantifies the amount and type of defects generated during the software
design phase against the design products. It is also applicable during the implementation phase as
design changes are backfit into the software design structure. This metric provides insight into
the number of defects identified and resolved, into the allocation of those defects by product and
development activity, and into the identification of those defects by type (i.e., requirements
traceability, standards deviations, design consistency, etc.). The design defect metric essentially
provides a general quality profile useful in determining the reusability of the design. For example,

11

past experience has shown that a high rate of defect discovery within software design products
such as design specifications, interface design documents, etc., is indicative of an inadequate or
incomplete design structure that materially decreases the design integrity of the software
products. Many aspects of code quality are impacted, thereby limiting the software in terms of
reuse.

3.2.2 DESIGN VOLATILITY

This metric category quantifies the amount and rates of change to the software design products
during the design and implementation phases. It also attempts to characterize the source and
nature of the changes. Excessive design volatility has shown to be directly related to reductions in
software product quality, reliability, and maintainability. Causes of design volatility include highly
concurrent development (requirements, design) activities, immature or inexplicit requirements
definition, implementation of immature or only top level designs, minimal system and software
level design modularity, preliminary performance shortfalls, and excessive domain specific
requirements changes. Measures of design volatility address the amount and rates of design
change of a defined software component during different software development phases.

3.2.3 DESIGN VALIDATION DENSITY

This metric category quantifies the number of specific test cases mapped to software design
constructs that are successfully validated. It provides insight into the number of design issues
actually verified against the design products or the implemented software component. Design
validation density is applicable to all software testing sequences given that a design baseline has
been previously defined. The metric is particularly valuable in helping to establish confidence in
the design of a reusable software component.

3.2.4 DESIGN PERFORMANCE

This metric quantifies the relationship of software design effort, schedule, and product output
during the design phase. Although somewhat of an indirect reusability metric, the design
performance factor provides insight into the efficiency of the design process for a given software
object or software domain source. Experience has shown that design performance metrics are
useful indicators in helping to identify those software components more likely to contain design
deficiencies and design quality inhibitors. Significantly overlapped requirements and design
activities, and premature software implementation, for example, generally result in high design
volatility and reduced quality of a software component.

3.3 DESIGN PRODUCT METRICS

The proposed design for reuse product metrics outlined in figure 5 is described in the following
paragraphs.

12

3.3.1 DESIGN INTERFACE QUALITY

This metric category quantifies the quality characteristics of software design interfaces and the
connectivity profile for these interfaces between associated design units. Measurement of
software interfaces provides a characterization of reusability with respect to an unmodified
software component independent ofthe underlying implementation. The applicable interfaces are
external interfaces that define the services provided by a given software component to its client
components. As such, the specific interfaces measured by this metric depend upon the granularity
of reuse relative to the nature of the reusable software component.

Reuse granularity ranges from large-scale reuse of systems and subsystems to small-scale reuse of
individual program design units. An example of design interface quality in large-scale reuse is a
measure of the executive service interfaces provided by a run-time executive. An example of
design interface quality in small-scale reuse is a measure of the package specification interface
provided by a sorting package.

Design interface quality comprises language specific measures of interface coupling, modularity,
independence, software clarity, completeness, complexity, redundancy, and consistency. A
general description of each of the metric categories related to measuring design interface quality
follows.

1. Interface Coupling. This metric category encompasses characteristics that affect the degree
of coupling between the reusable software component and the interfaced software. The
degree of coupling is determined by the characteristics of the software interfaces. Interface
characteristics that minimize the coupling to other design units facilitate the reuse of the
software component. The characteristics of the interfaces are assessed with respect to the
means by which a component obtains visibility to each of the following categories of
information:

a. data values (data coupling).
b. declarations such as types, subprograms, exceptions, etc. (syntactic coupling).
c. computational behavior (semantic coupling).

2. Modularity. This metric category encompasses the characteristics of information hiding,
cohesion, and the size profile of the reusable software component. Information hiding
addresses the extent to which implementation details are hidden from the clients of the
reusable component. Cohesion addresses the extent to which functional capabilities are
partitioned into logical groups of interfaces needed by the same clients. Size profile addresses
the extent to which interfaces are provided in manageable size structures.

3. Independence. This metric category encompasses characteristics describing the independence
of the reusable software component from the underlying host or target run-time system and

13

computer architecture. Independence is relevant to measuring reusability in circumstances
where the host or target systems may change.

4. Software Clarity. This metric category encompasses characteristics of the reusable software
component that provide a clear and understandable description ofthe program design
structure.

5. Completeness. This metric category addresses the presence of interface structures required
to support the full spectrum of uses of the interface. For example, profiles of exception
declarations provide an indication ofwhether error detection and handling is supported.

6. Complexity. This metric category encompasses measurements of interface characteristics
that simplify the processing required to reuse a software component.

7. Redundancy. This metric category addresses the amount of replication of module, data or
control flow structures within a set of design units. Replication reduces the reusability of the
software by increasing the difficulty of analyzing the impact of modifications and increasing
the effort required to make modifications to multiple locations.

8. Consistency. This metric category addresses the consistent usage of interface structures,
both within the interface and in the context ofthe clients of the interface. Consistency
includes measures that indicate the presence of extraneous and error-prone structures in the
reusable software component.

3.3.2 DESIGN UNIT QUALITY

This metric quantifies the quality characteristics of design units, including module structures,
data structures, and control flow structures. The applicable units are the units that provide the
implementation for a given reusable software component. Measures of unit quality are applicable
to assessments of a given reusable software component in circumstances where modifications
may be required in order to reuse the component.

Design unit quality comprises language specific measures of modularity, independence, software
clarity, completeness, complexity, consistency, and redundancy. Although similar in concept to
the design interface metrics, they are distinguished by their application to units within a given
component rather than to external interfaces provided by the component. A general description
of each of these seven categories follows. Only those characteristics of the metrics categories
that differ from those described in the design interface quality section are addressed.

1. Modularity. This metric category encompasses characteristics of information hiding,
cohesion, and the size profile ofthe reusable software component. Cohesion addresses the
organization of module and control flow structures into module structures that are tightly
coupled. Size profile addresses the size of units, including both executable and declarative
structures.

14

2. Independence. This metric category encompasses characteristics describing the
independence of the reusable software component from the underlying host or target run­
time system and computer architecture. Independence of design units includes aspects such
as the use of machine code, the use of system dependent library routines, memory
management issues, and run-time check suppression.

3. Software Clarity. This metric category encompasses characteristics of the reusable software
component that provide a clear and understandable description of the program design
structure.

4. Completeness. This metric category addresses the presence of structures indicative of
incomplete or extraneous design structures. These include the presence of bodies for
subprograms, packages and tasks, and profiles of the occurrence of null statements.

5. Complexity. This metric category encompasses measurements of the complexity of control
flow and data flow both within and between units. For example, accessing a data value as
both a parameter and as a global value increases the complexity of data flow between units.

6. Consistency. This metric category addresses the consistent use of declarations both within
and between units of a reusable software component. Consistency includes measures that
indicate the presence of extraneous and error-prone control flow and data flow structures.

7. Redundancy. This metric category addresses the amount ofreplication of module, data or
control flow structures within a set of design units. Replication reduces the reusability of the
software by increasing the difficulty of analyzing the impact of modifications and increasing
the effort required to make modifications to multiple locations.

3.3.3 USE PROFILE

This metric category quantifies the extent of use of a component or structure within a given
system. Measures of use are applicable to assessments of the potential usefulness of a given
component. They are also applicable to the assessment of the complexity of decoupling a given
structure from its uses. Decoupling is performed in the context ofRe-Engineering software to
improve the interface coupling or to eliminate redundancy.

Use profile is measured as the number of uses of a given component or structure within the
system. Profiles of use counts aggregated by various categories are also applicable to specific
investigations required in the context of reuse.

15

3.3.4 DESIGN TRACEABILITY

This metric category quantifies the completeness and correctness of the software design and
code in terms of the mapping to and from system and software requirements. It is applicable to
development methodologies in which requirements are modeled as definable entities, assigned a
unique identifier, and mapped to and from the software design and implementation.

Allocation is the mapping of system and software requirements to definable entities in the design.
Traceability is the mapping of the definable design entities back to the system and software
requirements.

Design traceability is measured as the proportion of entities mapped. The measures are
aggregated by various categories as required.

3.3.5 COMPUTER RESOURCE UTILIZATION

This metric quantifies the utilization of computer resources to determine the excess capacity
available for future changes and enhancements. Applicable measures include quantifications of
throughput, proportion utilized ofvarious kinds of processors (CPU, IO, etc.), and the
proportion utilized of various kinds of storage. Design unit measures of computer resource
utilization are estimates based on dynamic analysis of prototypes and static analysis of design
representations.

16

4. RE-ENGINEERING

4.1 DESCRIPTION

In the realm of software reuse, re-engineering connotes a variety of meanings, all of which are
accurate based on a particular perspective. For example, re-engineering may concentrate on the
addition of functionality to a single Ada library unit or attempt to implement a complete system
design overhaul. The NUWC Newport software reuse effort is emphasizing re-engineering at the
Ada library unit level (quality enhancement) and at the system/subsystem level (process
enhancement). As a basis for this effort, NUWC Newport is applying the emerging re-engineering
technology to the AN/BSY-1, AN/BQG-5/BSY-2, and the CCS Mk 2.

4.2 RE-ENGINEERING PROCESS

Effective software reuse is a process that is based primarily on re-engineering. NUWC Newport's
overall objective is the definition and implementation of a software reuse re-engineering specific
process. NUWC Newport has defined and implemented the minimal re-engineering process
which promotes non-reuse compliant software to reuse compliant software.

4.2.1 MEASUREMENT ANALYSIS

Efficient reuse specific re-engineering of legacy systems is dependent on effective measurement.
NUWC Newport has developed a measurement and selection process which supports expeditious
isolation of reusable legacy software, as well as the identification of re-engineerable software
assets. With respect to software reuse, re-engineerable software assets refers to legacy software
requiring varying degrees of re-engineering (quality enhancement) to meet the criteria
representative of reusable software.

Typically, measurement analysis of legacy software would result from an independent effort.
However, successful re-engineering oflegacy software is contingent upon a thorough
understanding of measurement analysis and the metrics associated with such an analysis. That is,
modification of legacy software, to enhance metrics values associated with the software, requires
in-depth knowledge of how the metric value is derived from the item being measured.

NUWC Newport has integrated several software analysis tools to enhance the reusable software
asset measurement and selection process. These analysis tools include (but are not limited to) :
AdaMAT, the Rational Environment, and The Software Evaluation Environment for Ada (SEE­
Ada).

NUWC Newport has also supported the definition of a software reuse specific set of Ada metrics
(associated with the AdaMAT metrics analysis tools). The set ofmetrics is common to the
Department ofDefense (DoD). This commonalty is maintained with the aid ofthe Defense
Information Systems Agency (DISA). The current set of software reuse specific Ada metrics is
provided in appendix C .

17

Isolation and selection ofreusable and/or re-engineerable software assets from a large software
system is arduous at best. However, using the software analysis tools NUWC Newport has
assembled, the task is greatly simplified.

Figure 6 is representative of the SEE-Ada's capability to support rapid isolation of reusable and/or
re-engineerable software assets. Figure 6 provides a SEE-Ada layers view of the various Ada
library units comprising the SASID system. With SEE-Ada it is possible to color-code Ada
library units that adhere to certain reusability criteria.

- .
'

<~-;~~}

r8$?::m
-~;:i~~~~

Figure 6. SEE-Ada: Layers View

Figure 7 is another view of SASID from SEE-Ada showing the degree to which various Ada
library units are coupled. Highly coupled units are probably not potential candidates for reuse.
However, the system/subsystem containing such units may be reusable.

Finally, with respect to measurement analysis and metric understanding, the Rational Environment
is also useful. The Rational Environment identifies non-reuse compliant software at the source
code level, rather than at a modular level like SEE-Ada. However, this Rational Environment
capability is ideally suited for supporting re-engineering, as described in th~ following section.

18

Figure 7. SEE-Ada: Graph View

4.2.2 RE-ENGINEERING

4.2.2.1 Quality Enhancement

The primary focus ofNUWC Newport's software reuse re-engineering effort is the transformation
of legacy software into reusable software (i.e., quality enhancement oflegacy software with
respect to software reuse). The primary software analysis tools supporting this effort are:
AdaMAT, the Rational Environment, and "SEE-Ada.

Quality enhancement consists of analyzing existing legacy software (i.e., quality measurement
with respect to software reuse), modification oflegacy software to meet software reuse criteria,
and re-measurement to ensure enhancements were effective.

19

source code:

--Project: AN/BSY -2 Submarine Combat System
Naval Sea Systems Command
Department of the Navy

genenc

type DATUM_ TYPE is private;

package LINKED_LIST_UTILITIES is

private

type ERROR_ TABLE_ TYPE;
type DEF _TABLE_ TYPE is access ERROR_ TABLE_ TYPE;

==> type Angle is digits 5; --No range specified; Impact *
type ERROR_TABLE_TYPE is

record
Left · : Angle;
Right : Angle;
The Error : BASE_TYPES.UNSIGNED_INTEGER_16_TYPE;
The_Error_Rec : DATUM_TYPE;
The_Time_First_Error : TIME.TIME_STAMP _TYPE;

end record;

end LINKED_ LIST_ UTILITIES;

111 Specifying range and accuracy makes machine dependencies detectable at
com pile-time.

This section of AN/BSY -2 Ada source code indicates an inherent non-conformance with
established reuse criteria. Namely, no range is given to the type Angle. The following excerpt
from an AdaMAT generated characteristics report demonstrates the tools capability to detect such
an error.

Score
0.81
0.78
0.93

Good
112
234
608

TotaliLevel------- Metric Name
138 11----------- RELIABILITY
300 11----------- MAINTAINABILITY
656 11 ----------- PORT ABILITY

20

0.90 785 86811----------- ALL_CRITERIA

0.75 48 6412---------- ANOMALY_MANAGEMENT
0.11 2 18 I 3--------- PREVENTION

0.00 0 1 I 4------ CONSTRAINED NUMERICS
-- Score reflects non-conformance

The goal of re-engineering is to correct the non-conformance, rendering the Ada library unit more
reusable. The following shows the same section of Ada source code after re-engineering:

--Project: AN/BSY-2 Submarine Combat System
Naval Sea Systems Command
Department ofthe Navy

-- ACTIVATION SEQUENCE -
genenc

type DATUM_TYPE is private;

package LINKED_ LIST_ UTILITIES is

private

type ERROR_ TABLE_ TYPE;
type DEF _TABLE_ TYPE is access ERROR_ TABLE_ TYPE;

==> type Angle is digits 5 range 0.0 .. 360.0; --Range/Accuracy Now Explicit
type ERROR_ TABLE_ TYPE is

record
Left
Right
The Error

: Angle;
: Angle;

: BASE_ TYPES. UNSIGNED_ fNTEGER _16 _TYPE;

21

The_Error_Rec : DATUM_TYPE;
The_Time_First_Error : TIME. TIME_ STAMP _TYPE;

end record;

end LINKED_ LIST_ UTILITIES;

The fact that the non-conformity has been adjusted is apparent in the new AdaMA T score given
to the Ada library unit:

Score Good Total!Level------- Metric Name

0.83 114 13711----------- RELIABILITY
0.79 235 29711----------- MAINTAINABILITY
0. 93 606 650 11----------- PORT ABILITY
0.91 784 860 11----------- ALL_CRITERIA

0.79 48 6112---------- ANOMALY_MANAGEMENT
0.19 3 16 I 3--------- PREVENTION

1.00 1 1 I 4-------- CONSTRAINED NUMERICS
-- Score reflects conformance

4.2.2.2 Process Enhancement

NUWC Newport's software reuse re-engineering process enhancement efforts have centered on
the acquisition, evaluation, and implementation of the most advanced software analysis tools
available. The goal of this effort is to establish an automated software analysis, engineering, re­
engineering, and reuse facility. This automated software reuse facility will support the generation
and maintenance of new and existing software systems. To date this facility is approximately 50
percent operational.

Experiences with the existing facility have already provided various insights regarding software
engineering process improvement and enhancement. As an example, based on various analysis
results it is apparent that the extraction of design information from legacy systems is more
pertinent to effective software reuse than quality enhancement (as previously described). This
observation does not preclude the importance of quality enhancement. Instead, it places a
precedence on design extraction. For large scale reuse to be effective, subsystems and systems, as

22

well as Ada library units, must be reusable. Large scale reuse requires that the design of legacy
systems be qualified before the low-level implementation. Specifically, source code quality
enhancement should start only after design qualification is complete. This approach provides the
most efficient means of extracting the largest possible reusable "pieces" from any given legacy
system.

The next level of effort will emphasize automating and improving the process of extracting design
information from legacy systems.

4.3 NEXT GENERATION RE-ENGINEERING

Analysis of legacy software systems from both a reuse and maintenance perspective has led to the
conclusion that the existing functional software engineering paradigm is inadequate. Functional
analysis and design techniques are ill-equipped to handle the complexity associated with existing
and envisioned Navy software systems. The private sector has reached a similar conclusion and
has embraced object-oriented technology (OOT) as the most plausible solution to the complexity
management issue. As a result, OOT and its application to Navy software systems is actively
being researched. The research is emphasizing both there-engineering of functionally designed
code as object-oriented code and the level of effort required to shift from functionally designed
and engineered code to object-oriented designed and engineered code.

With this in mind, the software reuse facility is actively being enhanced to support the OOT
paradigm. The facility includes the means to analyze both Ada and non-Ada software in support
of the OOT paradigm.

23

5. CONCLUSIONS I ISSUES

5.1 ACCESS TO SYSTEM EXPERTISE

Future work must be done to develop a submarine combat system domain architecture and object
oriented domain models. The submarine combat system architecture is necessary for defining the
domain software architecture, which in tum establishes the definition of the software components
for reuse. The software definition philosophy must evolve from the present functional structured
approach to an object-oriented . Functional structured definitions have a tendency to require
common data structures which are shared by multiple software components. This makes it
difficult to extract components from the existing system due to interdependencies of modules with
respect to data structures. Object-oriented techniques, on the other hand, encapsulate the data
and functionality within the object or software component. This approach facilitates the
extraction of the component for reuse purposes.

Component developers' assistance must be obtained to capture knowledge of the existing systems'
components. This support will require funding to meet the needs of an evolving model from
functional to object-oriented. In order to establish this support, reuse must become a domain
issue with domain level support. Individual system development must become a thing of the past
and the procurement philosophy must ensure that each new build is done with the intent of
providing legacy code for future developments. System developers must remove their narrow
view blinders and make their design decisions based on entire domain issues. For this to happen,
both policy support and financial support must be provided by the highest levels of management
within the submarine combat system domain.

Reverse engineering must be performed on existing combat system software. This requires an
evaluation of existing re-engineering resources and existing systems software to determine if the
resources must be increased to meet the needs for performing domain analysis. Again, this
requires the explicit support of the individual system developers in order to derive the underlying
knowledge associated with the software design and development.

5.2 INADEQUACY OF EXISTING PROCESSING RESOURCES

Case tools are being developed for performing software engineering, re-engineering, and
evaluation. These tools cover the entire software development life-cycle. However, they are
designed for use on workstation grade equipment. Presently, there is an inadequate number of
desktop processors with capability to access the workstation environments via networking. The
NUWC NEWPORT facilities must be expanded to provide the software engineering capabilities
to the software engineers desk top in order to effectively incorporate the software discipline into
the NUWC software development process.

In addition, Case tools are becoming readily available for Ada, C, and C++, and it is anticipated
the market place will develop Ada 9x capability also. However, CMS-2 is a Navy standard

24

language developed for Navy standard computers. It is doubtful that there will be adequate
automated support necessary for the re-engineering of the CMS-2 legacy code.

The metrics concepts presented in this report are based upon prior experience in the measurement
of software design processes and products. They form a basis for the development of a software
design for reuse metrics set.

New metrics must be developed to address more than software implementation. Since software
reuse addresses knowledge capture in all phases of the software development from requirements
to implementation, metrics should be developed for determining the reusability of software
requirements, specification, and design, in addition to implementation. In order to realize this
concept, formal means for stating requirements, specification, and design with a formal language
in these areas with well established rules and syntax metrics can be defined that can be used to
evaluate the software's quality, completeness, etc.

25/26
Reverse Blank

APPENDIX A
COMPONENT DESIGN SPECIFICATION TEMPLATE

Component Name: [text] (Component Developer)

This name should reflect the use of data standardization. If an existing standardized name
is in use, it should be used here.

Required/Optional: [text] (Component Developer)

This activity identifies components that meet, at least partially, the requirements of the
domain model and the imposed constraints.

Description: [text] (Component Developer)

The goal of this process is to ascertain the composition of the component systems, and
then to identify and describe the components that are common across systems in the domain. The
components identified in this process encapsulate services and related information into a single
construct with an interface that defines the operations supported by the component.

Source(s):[text systems/prototypes employing this design] (Component Developer)

This activity identifies the System that the component was initially developed for.

Adaptation Requirements (Variants): [text e.g., generic_parameters] (Component
Developer)

The goal of this process is to identify the differences among common components; i.e.,
adaptation analysis. Adaptation analysis is critical in deriving a domain specific software
architecture and component library that can adapt to future system needs. This analysis of
required adaptation may be based upon mission, threat, domain, or system planning information.

Reuse Guidance: [text] (Domain Analyst, Domain Engineer)

The goal of this process is to determine the reusability of the components by comparison
to reusability criteria.

Lessons Learned: [text] (Component Developer, Domain Engineer)

The goal for this process is create a set of guidelines for using the domain specific
software architecture in a full-scale software development activity. These guidelines include a
discussion of the rationale for the selection of a particular alternative, when to use particular
components, how/where these components have been used previously, and any lessons learned.

A-1

Constraints: (Component Developer, Domain Engineer)

Directives/Standards: [text]

The goal of this process is to identify all established and potential constraints affecting the
design process. A successful component design enables reuse by meeting as many constraints as
economically possible.

This process identifies and records all of the constraints imposed upon the component
design activity. A design may be driven by standards, specific software, hardware, tools,
directives, variations not defined in the problem space, performance goals, reuse goals, and
others. The full set of constraints must be established before the design activity can commence.
A successful component design enables reuse by meeting as many constraints as practicable.

Software : [text from SW IHW constraints]
Hardware: [text from sw/hw constraints]
Memory Size Allocation: [text]

Concurrence: [components_name(s)] (Component Developer)

The goal of this process is to document component behavior that is characterized with
attributes and operations. It also establishes appropriate relationship structures and connections
with other components, and portrays and documents required component behaviors and
constraints.

Structure:(Domain Engineer, Component Developer)

The goal of this process is to determine component structures that are common across the
domain. System designs and documentation are analyzed and existing system source code is
reverse engineered to identify existing structures. Component structure is essential for developing
reusable domain models for future system developments.

In this process there are two types of structures that are identified by the analysts: class
structures and assembly part structures. "Class structures" imply generalization and specialization
(gen-spec) relationships, whereas "assembly structures" imply whole and assembly part (whole­
part) relationships. The whole-part diagrams define the composition of the domain, while the
class or gen-spec diagrams describe the variation in objects, attributes and services within the
domain.

There are several methods and techniques to determine component .composition and
structure. Traditional functional methods are based on the system functions or functional
abstractions. Object-oriented development bases modular software system decomposition on the

A-2

classes and components that the system manipulates. Problems arise when attempting to translate
from one methodology to another or to mix methodologies.

Whole:[aggregate_component_names] -- ifthis component has parts
Part-Of [component_name] -- lfthis component is part of a larger component
Generalization-of [component_ name]
Specialization-of: [class_ name]

Connection: (Component Developer, Domain Engineer)

The goal of this process is to determine the necessary connections and interfaces between
components in the domain. Connection, essential for determining relationships and dependencies
between components, is used to construct reusable component models.

Instance: [component_name with cardinality]
Message: [component_name with associated service]

External Interfaces: [component_name with associated attribute] (Domain Engineer,
Component Developer)

The goal of this process is to consolidate and finalize the domain common components
model. In addition, rationale and tradeoffs, classification terms, and any pertinent component
characteristics (e.g., concurrency, external interfaces) are defined and documented to complete
the domain common component model diagrams and specifications.

State Space: [state transition diagram/matrix] (Component Developer)

Show the dynamic behavior associated with the component through the use of state
transition diagrams and matrix tables. These diagrams show the state space of the component, the
events that cause a transition from one state to another, and the actions that result from a state
change.

Attributes: (Component Developer)

The goal of this process is to ascertain the composition of the domain systems, and then to
identity and describe the components that are common across systems in the domain. The
components identified in this process encapsulate services and related information into a single
construct with an interface that defines the operations supported by the components.

Each component is described in terms of its associated characteristics and behavior.
Component characteristics are described in terms of attributes, which define persistent and non­
persistent data that an entity manages over time, and state information. Component behavior is
described in terms of services or operations that are performed by the component or on the
component. Three types of services or operations are identified and investigated by the analyst:
constructors, selectors, and iterators. Constructors are operations that alter the state of the

A-3

component; selectors are operations that evaluate the current state of the component; and
iterators are operations that pennit all parts of the component to be traversed.

Traceability: (Software Architecture) (Domain Engineer)

This process utilizes components identified in the previous phase to construct the domain
specific software architecture. Often several alternatives may be available that satisfy the
requirements and constraints. Select the domain specific software architecture that provides the
best economic advantage. In very large domains, one overall domain specific software
architecture may not provide enough commonality to be of substantial use.

The objective ofthis activity is to produce a high-level domain specific software
architecture depicting the main modules and their interfaces. Domain specific software
architectures provide the framework with which to develop tailorable, reusable assets.

Down to Detailed Design/Code: [compilation units- e.g. , package specifications]
Up to Domain Model: [problem_space_components, derivations]

Operations: (Domain Engineer)

The goal of domain design is to construct a design that reflects the solutions to the
problems (requirements) ofthe domain model within the domain constraints. The domain design
consists of domain specific software architecture with reuse guidelines and, optionally, a detailed
design.

Rationale: [text] (Domain Analyst, Domain Engineer)

The qualities of each domain specific software architecture are measured against identified
criteria. These criteria and their weights are established to identify the optimal solutions to the
problem space requirements. The advantages and disadvantages of each domain specific software
architecture alternative are recorded from a number of trade-off analyses.

Tradeoffs: [text] (Domain Engineer)

The goal of this process (and "Rationale" as described above) is to determine and record
the qualities of each potential component to support the selection of one or more components
from the alternatives.

A-4

APPENDIX B
COMBAT SYSTEM DOMAIN SOFTWARE CATEGORIES

B.1 TACTICAL
8 .1.1 Combat Control
8 . 1. 1. 1 Contact Management
B. 1. 1 . 1 Contact File Management
8.1 .1.1.2 Auxiliary Data Entry
8.1.1.1 .3 Multi-Sensor Correlation
8 .1.1.1.4 Target Motion Analysis

8 .1.1.2Combat System Management

8 .1.1.2.1 Display Select
8 .1.1.2.2 Tactical Situation
B.1.1.2.3 Search
8 .1.1.2.4 Tactical Support
8 .1.1.2.5 Contact Evaluation
8 .1.1.2.6 Class Summary

8. 1.2 Acoustic
8 .1.2.1 Detection
B.1.2.2 Classification
8 .1.2.3 Tracking
B.1 .2.4 Correlation and TMA
8 .1.2.5 Acoustic Support

8 .1.3 Weapons
B.1 .3.1 Weapons Launched Display and Control
8 .1.3 .2Weapons Launched Management

B.1.4 Non-Acoustics
8 .1.4.1 External Target Source Communication
B.1.4.2External Target Source Display Processing
B.1.4.3External Target Source Functional Processing
B.1.4.4Ships Own Data Link Processing
8 .1.4.5 Ships Tactical Information Data Links Processing

B. I. 5 Training

B.2 SYSTEM SERVICES

8.2.1 Capability and Security Services

8 -1

B.2.2 Data Interchange Services
B.2.3 Event and Error Management Services
B.2.4 File Services
B.2.5 Generalized Input/Output Services
B.2.6 Networks and Communications
B.2. 7 Process Management Services
B.2.8 Reliability, Adaptability, and Maintainability Services
B.2.9 Resource Management Services
B.2.1 0 Synchronization and Scheduling Services
B.2.11 System Initialization and Reinitialization Services
B.2.12 Time Services
B.2.13 Ada language Support Services

B.3 GRAPIDCS

B.3 .1 Association Table
B.3.2 Bitmap
B.3.3 Color
B.3 .4 Colormap
B.3 .5 Connection
B. 3. 6 Context
B. 3. 7 Cursor
B.3.8 Cut Buffer
B.3 .9 Device-Independent Color
B.3 .1 0 Display Macro
B.3.11 Drawing
B.3.12 Error
B.3.13 Event
B.3 .14 Extension
B.3.15 Fonts
B.3 .16 GC
B.3.17 Host Access
B. 3. 18 Housekeeping
B.3 .19 Image
B.3.20 Image Macro
B.3.21 Internationalization
B.3.22 Keyboard
B.3.23 Keysym Macro
B. 3. 24 Pixmap
B.3 .25 Pointer
B. 3. 26 Preference
B.3.27 Property
B.3.28 Region
B.3.29 Screen Saver
B.3.30 Selection

B-2

B.3.31 Standard Geometry
B.3 .32 Text
B.3.33 Visual
B.3 .34 Window Location
B.3 .35 Window Manager
B.3.36 Display Reource Management

B.4 DATA BASE REQUIREMENTS

B.4.1 Basic DB Management Services
B.4.1.1 Persistent Data
B.4.1.2Multiple Users
B.4.1.3Conventional Alphanumeric Data Types
B.4.1.4Definition and Manipulation ofBinary Large Objects
B.4.1 .5Power ofData Manipulation Language
B.4.1.6Pianned Queries
B .4. 1. 7 Ad hoc Queries
B .4. 1. 8 Interactive Queries
B.4.1.9 Embedded Queries
B.4.1.1 0 Transactions
B.4.1.11 Data Models
B.4 .1. 12 Conceptual Schema Definition
B. 4. 1. 13 External Schema Definition
B.4.1.14 Mapping to Internal Schema and Database
B .4. 1.15 Access Control
B.4.1.16 Heterogeneous Platforms
B.4.1.17 Multiple DBMSs
B.4.1.18 Training Mode
B.4.1 .19 Statistical Monitoring

B.4.2 Distribution
B.4.2.1 Distributed Query Processing
B.4.2.2 Distributed Transaction Management
B.4.2.3 Location Transparency
B.4.2.4 Fragmentation Transparency
B.4.2.5 Replication Transparency
B.4.2.6 Data Definition
B.4.2. 7 Local Autonomous Processing Capability
B.4.2.8 Continuous Operation
B.4.2.9 Hardware Independence
B.4.2.1 0 Operating System Independence
B.4.2.11 Network Independence

B.4.3 Heterogeneity
B. 4. 3.1 Remote Database Access

B-3

B.403o2Global Transactions
B.40303Multi Database Systems
B.403.4Federated Database Systems

B.4.4 Fault Tolerance
B.4.401Retrieval ofFault Information from the DBMS as a DBMS Query
B.4.402Diagnostic Tests
B.4.403Access to the Operational Status of DBMS Components
B.4.4.4Actions to be Taken on the Occurrence of a Fault

B .4 0 5 Security
B.4.5o1Multilevel Security
Bo40502Labeling
B 0 4 0 50 3 Mandatory Access Control
B040504Discretionary Access Control
B.40505User Role-Based Access Control
B .4 0 50 6 Integrity
B 0 4 0 50 7 Consistency
B040508 Identification and Authentication
B.40509 Security Auditing
B.405010 Least Privilege
B0405011 Trusted Path
B.4.5.12 Trusted Recovery
Bo4o5 o13 Inference and Aggregation
B.405014 Multilevel Data Model
B.4.5.15 SQL Extensions
B.405016 OS Interface
B.4.5.17 Network Interface
B 0 4 0 50 18 Heterogeneity
B .4 0 50 19 Trusted Database Interpretation

Bo4o6 Advanced Database Management Services
B.40601 Object Identifiers
B.40602Binary Large Objects
Bo4o6o3Collection Data type Constructors
B.406.4User-Defined Data Types
B.40605Sorting Order
B.40606Temporal Data
B.4060 7Spatial Data
B.40608Uncertain Data
B.40609Derived Attributes
B.406010 Composite Objects
B.406011 Object Type Hierarchies
Bo4o6o12 Object Encapsulation
B.406013 Versions and Configurations

B-4

B.4.6.14
B.4.6.15
B.4.6.16
B.4.6.17
B.4.6.18

Archival Storage
Schema Changes
Long Transactions
Rule Processing
Domain-Specific Standards (Enhanced Portability and lnteroperability)

B-5/B-6
Reverse Blank

APPENDIX C
SOFTWARE REUSE SPECIFIC SET OF ADA METRICS

Field definitions for the following metrics:

1) Metric Name Field-- Name of the metric to be controlled and/or analyzed.

2) Include/Exclude Field-- Controls whether or not a given metric is included in the analysis .

3) Reportable/Unreportable Field-- Controls which metrics are reportable. This field differs from the
Include/Exclude Field in that unreported metrics are analyzed, but not reported. Excluded metrics
are not analyzed and do not contribute metric counts or scores.

4) Adherence Listing Control Field-- Controls which adherences and non-adherences can be
reported.

Adherence is relative to particular coding styles, design parameters, quality factors, etc. This
field can contain four values: NIL, NON, ADH, or BOTH. NIL indicates that neither adherences
nor non-adherences can be reported. NON indicates non-adherences can be reported. ADH

indicates
adherences can be reported. Finally, BOTH indicates both adherences and non-adherences are
reported.

5) Score Threshold Field -- This field represents the metric score threshold that determines if a metric
lS

reported. If a particular metric score exceeds the threshold, then that metric is reported.

6) Bad Occurrence Threshold Field -- This field represents the metric bad occurrence threshold. If
the

count associated with a given metric is less than this threshold value, then the metric is reported.

7) Total Occurrence Threshold Field -- This field represents the metric total occurrence threshold. If
the

count associated with a given metric is less than this threshold value, then the metric is reported.

8) Metric Weighting Field --This field specifies the weight associated with a given metric, relative to
its

parent. Specifically, the weight factor has no effect on the score or count reported for the
weighted

metric. However, the weight factor multiplies the effect the weighted metric has on its parent.

9) Desired Occurrence Threshold Field -- This threshold value determines the number of metric
occurrences required before a given metric is compared with respect to other metrics.

C- 1

For more information see the AdaMAT User's Manual and the AdaMAT Reference Manual.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
RELIABILITY exclude reportable nil 100 0 0 I
MAINTAINABILITY exclude reportable nil 100 0 0
PORTABILITY exclude reportable nil 100 0 0
ALL_CRITERIA include reportable nil 100 0 0
SLOC include reportable nil 100 0 0
PHYSICAL_LINES include reportable nil 100 0 0
PHYSICAL_ADA_LINES include reportable nil 100 0 0
ADA_UNCOMMENTED_LINES include reportable nil 100 0 0
ADA_ COMMENTED _LINES include reportable nil 100 0 0
COMMENTED _LINES_ WITH_ TEXT include reportable nil 100 0 0
COMMENTED_LINES_BLANK include reportable nil 100 0 0
PHYSICAL_ COMMENT _LINES include reportable nil 100 0 0
COMMENT _LINES_ WITH_ TEXT include reportable nil 100 0 0
COMMENT _LINES_BLANK include reportable nil 100 0 0
PHYSICAL_BLANK_LINES include reportable nil 100 0 0
LOGICAL_LINES include reportable nil 100 0 () 0
STATEMENTS include reportable nil 100 0 () I
EXECUTABLE_STATEMENTS include reportable nil 100 0 0 I
DECLARATIVE_ STATEMENTS include reportable nil 100 0 0
CONTEXT CLAUSES include reportable nil 100 0 0
WITH CLAUSES include reportable nil 100 0 0
USE_CLAUSES include reportable nil 100 0 0 6
PRAGMAS include reportable nil 100 0 0 2
CYCLOMATIC COMPLEXITY include reportable nil 100 0 0 6 10

MULTIPLE_ COND _ CYCLOMA TIC_ COMPLEXITY include reportable nil 100 0 0 6 10
ANOMALY_MANAGEMENT include reportable nil 100 0 0
PREVENTION include reportable nil 100 0 0
APPLICA TIVE DECLARATIONS include reportable nil 100 0 0 0
APPLICATIVE_DECL_SPECIFICATION include reportable nil 100 0 0 (I

APPLICATIVE_DECL_BODY include reportable nil 100 0 0 0
DEFAULT _INITIALIZATION include reportable nil 100 0 0 0
DEFAULT _INIT _SPECIFICATION include reportable nil 100 0 0 0
DEFAULT_INIT_BODY include reportable nil 100 0 0 0
NORMAL_LOOPS include reportable nil 100 0 0 2
CONSTRAINED_ SUBTYPE include reportable nil 100 0 0 I
CONSTRAINED _NUMERICS include reportable nil 100 0 0 6
CONSTRAINED_ VARIANT_ RECORDS include reportable nil 100 0 0 0
READ_ ONLY_ OBJECTS_ CONSTANT include reportable non 100 0 0 I

READ_ ONLY_ OBJECTS_ IN_ SPEC_ CONSTANT include reportable non 100 0 ()

READ_ ONLY_ OBJECTS_ IN_ BODY_ CONSTANT include reportable non 100 0 (I I
READ_ ONLY _PARAMETERS_IN_MODE include reportable non 100 0 0 2
UNREAD_PARAMETERS_OUT_MODE include reportable non 100 0 0 2
OUT _PARAMETERS_ UPDATED include reportable non 100 0 0 6
READ_ VARIABLES_ DEFINED include reportable non 100 0 0

READ_ V ARIABLES_IN_SPEC_DEFINED include reportable non 100 0 0 6
READ_ VARIABLES_IN_BODY_DEFINED include reportable non 100 0 0 6
VARIABLES _READ include reportable non 100 0 0 I
VARIABLES_ IN_ SPEC_ READ include reportable non 100 0 0 2
VARIABLES _IN _BODY_ READ include reportable non 100 0 0 2

C-2

(I) (2) (3) (4) (5) (6) (7) (8) (9)
DETECTION include reportable nil 100 0 0 l
SUPPRESS_PRAGMA include reportable nil 100 0 0 1
CONSTRAINT _ERROR include reportable nil 100 0 0 6
PROGRAM ERROR include reportable nil 100 0 0 6
STORAGE_ERROR include reportable nil 100 0 0 6
NUMERIC ERROR include reportable nil 100 0 0 6
USER TYPES include reportable nil 100 0 0
USER_TYPES_FOR_P~TERS include reportable nil 100 0 0
USER_ TYPES_SPECIFICA TION include reportable nil 100 0 0
USER_ TYPES_BODY include reportable nil 100 0 0
RECOVERY include reportable nil 100 0 0 l
USER_DEFINED_EXCEPTIONS_RAISED include reportable non 100 0 0 6
USER_EXCEPTIONS _RAISED include reportable nil 100 0 0 2
INDEPENDENCE include reportable nil 100 0 0 I
IO_INDEP include reportable nil 100 0 0 l
NO_ MISSED_ CLOSE include reportable nil 100 0 0 2
NO_SYS_DEP _IO include reportable nil 100 0 0 0
10 NON MIX include reportable nil 100 0 0 0 - -
TASK INDEP include reportable nil 100 0 0 ()

NO_TASK_STMT include reportable nil 100 0 0 0
TASK_STMT_NON_MIX include reportable nil 100 0 0 0
MACH_INDEP include reportable nil 100 0 0 I
MACHARITHINDEP include reportable nil 100 0 0 I
PACKAGE_ARITH_INDEP include reportable nil 100 0 0
NO_MAX_INT include reportable nil 100 () 0
NO_MIN_INT include reportable nil 100 0 0
NO_MAX_DIGITS include reportable nil 100 0 0
NO_MAX_MANTISSA include reportable nil 100 0 0
NO_FINE_DELTA include reportable nil 100 0 ()

NO_TICK include reportable nil 100 0 0
NO_INTEGER_DECL include reportable nil ICKI 0 0
NO_ SHORT_ INTEGER_ DECL include reportable nil 100 0 0
NO_LONG_INTEGER_DECL include reportable nil 100 0 0
NO_FLOAT_DECL include reportable nil 100 0 0
NO_SHORT_FLOAT_DECL include reportable nil 100 0 0
NO _LONG_FLOAT _DECL include reportable nil 100 0 ()

NO_NATURAL_DECL include reportable nil 100 0 ()

NO _POSITIVE_DECL include reportable nil 100 0 0
FIXED_CLAUSE include reportable nil 100 0 0 6
MACHREPINDEP include reportable nil 100 0 0 I
NO_PRAGMA_PACK include reportable nil 100 0 0 2
NUMERIC_ CONSTANT _DECL include reportable nil 100 0 0 0
NUMERIC_TYPE_DECLARATIONS include reportable nil 100 0 0 0
CLAUSE_REP _INDEP include reportable nil 100 0 0 I
NO_LENGTH_CLAUSE_FOR_SIZE include reportable nil 100 0 0 2
NO_LENGTH_CLAUSE_FOR_STORAGE_SIZE include reportable nil 100 0 0 2
NO_ALIGNMENT_CLAUSE_FOR_RECORD_TYPES include reportable nil 100 0 0 0
NO_CO~NENT_CLAUSE_FOR_RECORD_TYPES include reportable nil 100 0 0 2
MACHCONFIGINDEP include reportable nn 100 0 () I
NO_ADDRESS_CLAUSE_IN_DECL include reportable nil 100 0 0 2
NO_PRAG_SYS_PARAM include reportable nil 100 0 0 6
NO REP ATTRIBUTE include reportable nil 100 0 0
MACHCODEINDEP include reportable nil 100 0 0

C-3

(l) (2) (3) (4) (5) (6) (7) (8) (9)
NO_MACH_CODE_STMT include reportable nil 100 0 0 3
SOFf INDEP include reportable nil 100 0 0 l
NO_SYS_DEP _MOD include reportable nil 100 0 0 0
NO IMPL DEP PRAGMAS include reportable nil 100 0 0 6 - - -
NO _PRAGMA_INTERF ACE include reportable nil 100 0 0 2
NON _ACCESS_ TYPE include reportable nil 100 0 0 2
NO IMPL DEP ATfRS include reportable nil 100 0 0 6 - - -
PHYS_LIM_INDEP include reportable nil 100 0 0 0
COMPILER_LIMIT include reportable nil 100 0 0 0

WITH_ COMPILER_LIMIT _BY _MODULE include reportable nil 100 0 0 0 10
USE_ COMPILER_LIMIT _BY _MODULE include reportable nil 100 0 0 0 10
TRANSFER_COMPILER_LIMIT_BY_MODULE include reportable nil 100 0 0 0 500
INSTANTIATION_ COMPILER_LIMIT _BY _MODULE include reportable nil 100 0 0 0 10
WHEN_COMPILER_LIMIT_BY_MODULE include reportable nil 100 0 0 0 100
DECLARATIVE_ COMPILER_LIMIT _BY_ MODULE include reportable nil 100 0 0 0 100
EXECUTABLE_COMPILER_LIMIT_BY_MODULE include reportable nil 100 0 0 0 100
PRAGMA_COMPILER_LIMIT_BY _MODULE include reportable nil 100 0 0 () 10
MODULARITY include reportable nil 100 0 0 I
INFORMA TION_HIDING include reportable nil 100 0 0
HIDDEN_INFORMATION include reportable nil 100 0 0
CONST ANTS_HID include reportable nil 100 0 0 I
EXCEPTIONS _HID include reportable nil 100 0 0 I
VARIABLES _HID include reportable nil 100 0 0 2
TYPES HID include reportable nil 100 0 0
SUBTYPES_HID include reportable nil 100 0 0
TASKS_HID include reportable nil 100 0 0 6
PRIVATE_INFORMATION include reportable nil 100 0 0 I
PRIVATE_ TYPES include reportable nil 100 0 0 0
LIMITED _PRIVATE_ TYPES include reportable nil 100 0 0 0
PRIVATE_TYPE_AND_PART include reportable nil 100 0 0 6
PRIVATE_ TYPE_AND _CONSTANT include reportable nil 100 0 0 6
PROFILE include reportable nil 100 0 0 I
LIMITED_ SIZE _PROFILE include reportable nil 100 0 0 I 100
STATEMENT _PROFILE include reportable nil 100 0 0 6
DECLARATION _PROFILE include reportable nil 100 0 0 I
LffiRARY _CLAUSE _PROFILE include reportable nil 100 0 0 6
SIMPLE _BLOCKS include reportable nil 100 0 0 6
COUPLING include reportable nil 100 () 0 I

NO_MULTIPLE_TYPE_DECLARATIONS include reportable nil 100 0 0 I
NO_ VARIABLE_DECLARATIONS_IN_SPEC include reportable nil 100 0 () 6
INFORMATION _LOCALIZED include reportable nil 100 0 0 I
WITHS _LOCALIZED include reportable nil 100 0 () I
WITHS _IN_ SPEC _LOCALIZED include reportable non 100 0 0 2
WITHS _IN_ BODY_ LOCALIZED include reportable non 100 0 0 2
WITHS _IN_ SUBUNIT _LOCALIZED include reportable non 100 0 0 2
ENTITIES LOCALIZED include reportable nil 100 0 0 I
ENTITIES _IN_ SPEC_ LOCALIZED include reportable nil 100 0 0 I
VARIABLES_ IN_ SPEC_ LOCALIZED include reportable non 100 0 ()

CONSTANTS _IN_SPEC _LOCALIZED include reportable non 100 () 0
TYPES _IN _SPEC_LOCALIZED include reportable non 100 0 0
SUBTYPES _IN_ SPEC _LOCALIZED include reportable non 100 0 0
PROCEDURES _IN_ SPEC _LOCALIZED include reportable non 100 0 0
FUNCTIONS_ IN_ SPEC_ LOCALIZED include reportable non 100 0 0

C-4

(l) (2) (3) (4) (5) (6) (7) (8) (9)
PACKAGES_IN_SPEC_LOCALIZED include reportable non 100 0 0 2
GENERIC_PROCEDURES_IN _SPEC _LOCALIZED include reportable non 100 0 0 I
GENERIC_FUNCTIONS_IN_SPEC_LOCALIZED include reportable non 100 0 0
GENERIC_PACKAGES_IN_SPEC_LOCALIZED include reportable non 100 0 0
ENTITIES_ IN_ BODY _LOCALIZED include reportable nil 100 0 0
V ARIABLES_IN _BODY_ LOCALIZED include reportable non 100 0 0
CONSTANTS_IN_BODY _LOCALIZED include reportable non 100 0 0
TYPES_IN_BODY _LOCALIZED include reportable non 100 0 0
SUBTYPES_IN _BODY _LOCALIZED include reportable non 100 0 0
PROCEDURES_ IN_ BODY_ LOCALIZED include reportable non 100 0 0 I
FUNCTIONS_IN_BODY _LOCALIZED include reportable non 100 0 0 1
PACKAGES_IN_BODY _LOCALIZED include reportable non 100 0 0 2

GENERIC_PROCEDURES_IN_BODY _LOCALIZED include reportable non 100 0 0
GENERIC_FUNCTIONS_IN_BODY _LOCALIZED include reportable non 100 0 0
GENERIC_PACKAGES_IN_BODY _LOCALIZED include reportable non 100 0 0
ENTITIES _IN_ SUBUNIT _LOCALIZED include reportable nil 100 0 0
V ARIABLES_IN _SUBUNIT _LOCALIZED include reportable non 100 0 0
CONST ANTS_IN_ SUBUNIT _LOCALIZED include reportable non 100 0 0
SUBTYPES_ IN_ SUBUNIT _LOCALIZED include reportable non 100 0 ()

TYPES _IN_ SUBUNIT_ LOCALIZED include reportable non 100 0 0
PROCEDURES _IN _SUBUNIT _LOCALIZED include reportable non 100 0 ()

FUNCTIONS_IN_SUBUNIT_LOCALIZED include reportable non 100 0 ()

PACKAGES_IN_SUBUNIT_LOCALIZED include reportable non 100 0 0 2
GENERIC_ PROCEDURES _IN_ SUBUNIT_ LOCALIZED include reportable non 100 0 0
GENERIC_FUNCTIONS_IN_SUBUNIT_LOCALIZED include reportable non 100 0 0
GENERIC_PACKAGES_IN_SUBUNIT_LOCALIZED include reportable non 100 0 0
SELF _DESCRIPTIVENESS include reportable nil 100 0 0 I
COMMENTS include reportable nil 100 0 0 0
N_COMMENTS include reportable nil 100 0 0
NCS_SPEC include reportable nil 100 0 0
NCS_PACKAGE_SPEC include reportable nil 100 0 0 5
NCS_ TASK_ SPEC include reportable nil 100 0 0 5
NCS _ SUBPROG_ SPEC include reportable nil 100 0 0 3
NCS BODY exclude reportable nil 100 0 0
NCS_PACKAGE_BODY exclude reportable nil 100 0 0 5
NCS TASK BODY exclude reportable nil 100 0 () 5 - -
NCS_SUBPROG_BODY exclude reportable nil 100 0 () 3
NCS_SUBUNIT exclude reportable nil 100 0 0 5
NCS_BODY _STUB exclude reportable nil 100 0 0 3
NCS _STATEMENTS exclude reportable nil 100 0 ()

NCS_EXIT exclude reportable nil 100 () ()

NCS_RETURN exclude reportable nil 100 0 0
NCS GOTO exclude reportable nil 100 0 ()

NCS_ABORT exclude reportable nil 100 0 0
NCS_DELAY exclude reportable nil 100 0 0
NCS_TERMINATE exclude reportable nil 100 0 ()

NCS WITH exclude reportable nil 100 0 0
NCS USE exclude reportable nil 100 0 ()

NCS_DECLARATIONS exclude reportable nil 100 0 0
NCS PRAGMA exclude reportable nil 100 0 0
NCS _RECORD _REPRESENTATION exclude reportable nil 100 0 0 3
NCS_ADDRESS_ CLAUSE exclude reportable nil 100 0 0 3
NCS_ALIGNMENT _CLAUSE exclude reportable nil 100 0 0 3

C-5

(1) (2) (3) (4) (5) (6) (7) (8) (9)
NCS_LENGTH_ CLAUSE exclude reportable nil 100 0 0 1 3
NCS_CONSTANT_DECL exclude reportable nil 100 0 0 I
NCS_ V ARIABLE_DECL exclude reportable nil 100 0 0 I
NCS_ENTRY _DECL exclude reportable nil 100 0 0 2
NCS_BEFORE_PACKAGE_SPEC exclude reportable nil 100 0 0 5
NCS_BEFORE _TASK _SPEC exclude reportable nil 100 0 0 5
NCS_BEFORE_ SUBPROG _SPEC exclude reportable nil 100 0 0 3
NCS_BEFORE_PACKAGE_BODY exclude reportable nil 100 0 0 5
NCS_BEFORE_TASK_BODY exclude reportable nil 100 0 0 5
NCS_BEFORE_SUBPROG_BODY exclude reportable nil 100 0 0 3
NCS _ BEFORE_SUBUNIT exclude reportable nil 100 0 0 5
NCS_BEFORE_BODY _STUB exclude reportable nil 100 0 () 3
NCS_BEFORE_EXIT exclude reportable nil 100 0 ()

NCS_BEFORE_RETlilUN exclude reportable nil 100 0 0
NCS_BEFORE_GOTO exclude reportable nil 100 0 0
NCS_BEFORE_ABORT exclude reportable nil 100 0 0
NCS_BEFORE_DELA Y exclude reportable nil 100 0 0
NCS BEFORE TERMINATE exclude reportable nil 100 0 0 - -
NCS_BEFORE_ WITH exclude reportable nil 100 0 0
NCS_BEFORE_USE exclude reportable nil 100 0 0
NCS_BEFORE_PRAGMA exclude reportable nil 100 0 0 1

NCS_BEFORE_RECORD _REPRESENTATION exclude reportable nil 100 0 () 3
NCS_BEFORE_ADDRESS_CLAUSE exclude reportable nil 100 0 () 3
NCS_BEFORE_ALIGNMENT _CLAUSE exclude reportable nil 100 0 0 3
NCS_BEFORE_LENGTH_ CLAUSE exclude reportable nil 100 0 0 3
NCS_BEFORE_CONSTANT_DECL exclude reportable nil 100 0 0 I
NCS_BEFORE_VAJUABLE_DECL exclude reportable nil 100 () 0 I
NCS_BEFORE_ENTRY_DECL exclude reportable nil 100 0 0 2
N_ COMMENTED include reportable nil 100 0 0
NCO_SPEC include reportable nil 100 0 0
NCO_PACKAGE_SPEC include reportable nil 100 0 0
NCO_TASK_SPEC include reportable nil 100 0 (I

NCO_ SUBPROG_ SPEC include reportable nil 100 () 0
NCO_BODY exclude reportable nil 100 0 0
NCO_PACKAGE_BODY exclude reportable nil 100 0 0
NCO_TASK_BODY exclude reportable nil 100 0 0
NCO_SUBPROG_BODY exclude reportable nil 100 0 0
NCO SUBUNIT exclude reportable nil 100 0 0
NCO_BODY_STUB exclude reportable nil 100 0 0
NCO _ST A TE.MENTS exclude reportable nil 100 0 0
NCO_EXIT exclude reportable nil 100 0 0
NCO_RETURN exclude reportable nil 100 0 0
NCO GOTO exclude reportable nil 100 0 0
NCO_ABORT exclude reportable nil 100 0 0 2
NCO_DELAY exclude reportable nil 100 0 () 2
NCO TERMINATE exclude reportable nil 100 0 0 2
NCO_WITH exclude reportable nil 100 0 0
NCO USE exclude reportable nil 100 0 0
NCO DECLARATIONS exclude reportable nfl IOU 0 ()

NCO_PRAGMA exclude reportable nil 100 0 0
NCO_ RECORD_ REPRESENTATION exclude reportable nil 100 () ()

NCO_ ADDRESS_ CLAUSE exclude reportable nil 100 0 0
NCO _ALIGNMENT_ CLAUSE exclude reportable nil 100 0 0

C-6

(l) (2) (3) (4) (5) (6) (7) (8) (9)
NCO_LENGTH_CLAUSE exclude reportable nil 100 0 0 I
NCO_CONSTANT_DECL exclude reportable nil 100 0 0
NCO_VAJUABLE_DECL exclude reportable nil 100 0 0
NCO_ENTRY _DECL exclude reportable nil 100 0 0
NCO_BEFORE_PACKAGE_SPEC exclude reportable nil 100 0 0
NCO_BEFORE_TASK_SPEC exclude reportable nil 100 0 0
NCO _BEFORE_ SUBPROG_ SPEC exclude reportable nil 100 0 0
NCO_BEFORE_PACKAGE_BODY exclude reportable nil 100 0 0
NCO_BEFORE_TASK_BODY exclude reportable nil 100 0 0
NCO_BEFORE_SUBPROG_BODY exclude reportable nil 100 0 0
NCO _BEFORE_ SUBUNIT exclude reportable nil 100 0 0
NCO_BEFORE_BODY _STUB exclude reportable nil 100 0 0
NCO _BEFORE_EXIT exclude reportable nil 100 0 0
NCO_BEFORE_RE!tntN exclude reportable nil 100 0 0
NCO BEFORE GOTO exclude reportable nil 100 0 0 I - -
NCO_BEFORE_ABORT exclude reportable nil 100 0 0 2
NCO_BEFORE_DELAY exclude reportable nil 100 0 0 2
NCO _BEFORE_ TERMINATE exclude reportable nil 100 0 0 2
NCO _BEFORE_ WITH exclude reportable nil 100 () (I

NCO_BEFORE_USE exclude reportable nil 100 0 0
NCO_BEFORE_PRAGMA exclude reportable nil 100 0 0

NCO_BEFORE_RECORD_REPRESENTATION exclude reportable nil 100 0 0
NCO_BEFORE_ADDRESS_CLAUSE exclude reportable nil 100 0 ()

NCO_BEFORE_ALIG~NT_CLAUSE exclude reportable nil 100 0 0
NCO_BEFORE_LENGTH_CLAUSE exclude reportable nil 100 0 0

NCO_BEFORE_CONSTANT_DECL exclude reportable nil 100 0 0 I
NCO_BEFORE_VAJUABLE_DECL exclude reportable nil 100 0 0 I
NCO_BEFORE_ENTRY_DECL exclude reportable nil 100 0 0 I
IDENTIFIER include reportable nil 100 0 0 3
NO _PREDEFINED_ WORDS include reportable nil 100 0 0 3

SIMPLICITY include reportable nil 100 0 0

CODING_SIMPLICITY include reportable nil 100 0 0 I
SIMPLE_ BOOLEAN _EXPRESSION include reportable nil 100 0 0 0
EXPRES_TO_DO_BOOLEAN_ASSIGN include reportable nil 100 0 0 I
DESIGN_ SIMPLICITY include reportable nil 100 0 0
CALLS_ TO _PROCEDURES include reportable nil 100 0 0 10
ARRAY_ TYPE_EXPLICIT include reportable nil 100 0 0 3

SUBTYPE_EXPLICIT include reportable nil 100 0 0 3

ARRAY _RANGE_ TYPE_EXPLICIT include reportable nil 100 0 0 3

DECLARATIONS_ CONTAIN_ LITERALS include reportable nil 100 0 0
FLOW_SIMPLICITY include reportable nil 100 0 0

BRANCH_CONSTRUCTS include reportable nil 100 0 0 10
SINGLE EXIT SUBPROGRAM include reportable nil 100 0 0 - -
FOR LOOPS include reportable nil 100 0 0
LEVEL_ OF _NESTING include reportable nil 100 0 0 5
LEVEL_ OF_ NESTING_ BY_ MODULE include reportable nil 100 0 0 5
STRUCTURED_BRANCH_CONSTRUCT include reportable nil 100 0 0
NON_BACK_BRANCH_ CONSTRUCT include reportable nil 100 0 0
NO_LABELS include reportable nil 100 0 0 6 0

DECISIONS include reportable nil 100 0 0 I 10
GOTOS include reportable nil 100 0 0 6 0
BRANCH_AND _NESTING include reportable nil 100 0 (I I
SYSTEM_CLAJUTY include reportable nil 100 0 0

C-7

(l) (2) (3) (4) (5) (6) (7) (8) (9)
STYLE include reportable nil 100 0 0 1
EXPRESSION _STYLE include reportable nil 100 0 0 I
NON_ NEGATED _BOOLEAN_ EXPRESSIONS include reportable nil 100 0 0 1
EXPRESSIONS_P ARENTHESIZED include reportable nil 100 0 0
NO_ WHILE_LOOPS include reportable nil 100 0 0
FOR_LOOPS_~TH_TYPE include reportable nil 100 0 0
DECLARATION_ STYLE include reportable nil 100 0 0
NO _DEFAULT _MODE_P ARAMETERS include reportable nil 100 0 0 3
PRIVATE_ ACCESS_ TYPES include reportable nil 100 0 0 2
SINGLE_ OBJECT _DECLARATION _LISTS include reportable nil 100 0 0 3
SINGLE_IMPLICIT _ TYPE_ARRA Y include reportable nil 100 0 0 6
NO_INITIALIZATION_BY _NEW include reportable nil 100 0 0 6
NAMING_STYLE include reportable nil 100 0 0 1
STRUCTURES NAMED include reportable nil 100 0 0 1
NAMED _LOOPS include reportable nil 100 0 0 1
NAMED _BLOCKS include reportable nil 100 0 0
STRUCTURE_ENDS_ WITH_NAME include reportable nil 100 () ()

MODULE_END _ WITH_NAME include reportable nil 100 0 0 3
LOOP _END_ WITH_NAME include reportable nil 100 0 0
BLOCK_END _ WITii_NAME include reportable nil 100 0 0
NAMED_EXITS include reportable nil 100 0 0
NAMED _AGGREGATE include reportable nil 100 0 0
QUALIFICATION_STYLE include reportable nil 100 0 0
QUALIFIED _AGGREGATE include reportable nil 100 0 0 3
QUALIFIED _SUBPROGRAM include reportable nil 100 0 0 1
EXACTNESS include reportable nil 100 0 0 1
WITHS _UTILIZED include reportable nil 100 0 0 0
WITHS_IN _SPEC_ UTILIZED include reportable non 100 0 0 0
WITHS_IN_BODY _UTILIZED include reportable non 100 0 0 0
WITHS _IN_ SUBUNIT_ UTILIZED include reportable non 100 0 0 0
ENTITIES_REFERENCED include reportable nil 100 0 0 I
ENTITIES _IN_ SPEC_REFERENCED include reportable nil 100 0 0 I
VARIABLES_ IN_ SPEC_ REFD include reportable non 100 0 0 2
CONSTANTS_ IN_ SPEC_ REFD include reportable non 100 0 0 I
TYPES_IN _SPEC _REFD include reportable non 100 0 0 2
SUBTYPES_ IN _SPEC _REFD include reportable non 100 0 0 2

ENUMERATION_ LITERALS_IN _SPEC _REFD include reportable non 100 0 0 6
COMPONENTS_ IN_ SPEC _REFD include reportable non 100 0 0 2
PROCEDURES _IN_ SPEC _REFD include reportable non 100 0 0 2
FUNCTIONS_IN_SPEC_REFD include reportable non 100 0 0 2
IN _PARAMETERS _IN_ SPEC _REFD include reportable non 100 0 0 6
OUT _P ARAMETERS_IN _SPEC _REFD include reportable non 100 0 0 6
IN_ OUT _PARAMETERS_ IN_ SPEC_ REFD include reportable non 100 0 0 6
PACKAGES_IN_SPEC_REFD include reportable non 100 0 0 2
ENTRIES _IN _SPEC_ REFD include reportable non 100 0 0 2
EXCEPTIONS_IN_SPEC_REFD include reportable non 100 0 0 6
GENERIC _PROCEDURES_ IN_ SPEC_ REFD include reportable non 100 0 () 2
GENERIC_FUNCTIONS_IN_SPEC_REFD include reportable non 100 0 0 2
GENERIC_PACKAGES _IN _SPEC _REFD include reportable non 100 0 0 2
ENTITIES IN BODY REFERENCED include reportable nil 100 0 0 I - - -
VARIABLES _IN _BODY _REFD include reportable non 100 0 0 2
CONSTANTS_IN_BODY _REFD include reportable non 100 0 0 I
TYPES_IN_BODY _REFD include reportable non 100 0 () 2

C-8

(l) (2)
SUBTYPES_IN_BODY _REFD include

ENUMERATION_LITERALS_IN_BODY _REFD include
COMPONENTS_IN _BODY_ REFD include
PROCEDURES_IN_BODY _REFD include
FUNCTIONS_IN_BODY _REFD include
IN_PARAMETERS_IN_BODY_REFD include
OUT _P ARAMETERS_IN_BODY _REFD include
IN_OUT_PARAMETERS_IN_BODY _REFD include
PACKAGES_IN_BODY _REFD include
ENTRIES_IN_BODY _REFD include
EXCEPTIONS_IN_BODY _REFD include
GENERIC_PROCEDURES_IN_BODY _REFD include
GENERIC_FUNCTIONS_IN_BODY _REFD include
GENERIC_PACKAGES_IN_BODY _REFD include
ENTITIES_IN_SUBUNIT_REFERENCED include
V ARIABLES_IN_SUBUNIT _REFD include
CONST ANTS_IN_SUBUNIT _REFD include
TYPES_IN_ SUBUNIT _REFD include
SUBTYPES _IN_ SUBUNIT_ REFD include

ENUMERATION_LITERALS_IN_SUBUNIT_REFD include
COMPONENTS_IN_SUBUNIT_REFD
PROCEDURES_IN _SUBUNIT _REFD
FUNCTIONS_IN_SUBUNIT_REFD
IN _P ARAMETERS_IN _SUBUNIT_ REFD

OUT _PARAMETERS_ IN _SUBUNIT _REFD
IN_ OUT _P ARAMETERS_IN _SUBUNIT _REFD
PACKAGES_IN_SUBUNIT_REFD
ENTRIES_IN _SUBUNIT _REFD
EXCEPTIONS_IN_SUBUNIT_REFD
GENERIC _PROCEDURES_ IN _SUBUNIT_ RED
GENERIC_FUNCfiONS_IN_SUBUNIT_REFD
GENERIC_PACKAGES_IN_SUBUNIT_REFD

include
include
include
include
include
include
include
include
include
include
include
include

C-9/C-10
Reverse Blank

(3) (4) (5) (6) (7) (8) (9)
reportable non 100 0 0 2
reportable non 100 0 0 6
reportable non 100 0 0 2
reportable non 100 0 0 2
reportable non 100 0 0 2
reportable non 100 0 0 6
reportable non 100 0 0 6
reportable non 100 0 0 6
reportable non 100 0 0 2
reportable non 100 0 0 2
reportable non 100 0 0 6
reportable non 100 0 0 2
reportable non 100 0 () 2
reportable non 100 0 0 2
reportable nil 100 0 0
reportable non 100 0 0 2
reportable non 100 0 0 1
reportable non 100 0 0 2
reportable non 100 0 () 2
reportable non 100 0 0 6
reportable non 100 0 0 2
reportable non 100 0 0 2
reportable non 100 0 0 2
reportable non 100 0 0 6
reportable non 100 0 0 6
reportable non 100 0 0 6
reportable non 100 0 0 2
reportable non 100 0 0 2
reportable non 100 0 0 6
reportable non 100 0 0 2
reportable non 100 0 0 2
reportable non 100 0 0 2

NUWC-NPT TM 942006

DISTRIBUTION LIST

Codes:

02244
0251
0261
0262 (2)
2094
215
2151 (T. Choinski)
2151 (D. Organ)
2153 (R. Howbrigg)
22
222
2221
2221 (D. Juttelstad) 10 copies
2221 (S. Roodbeen)
2223
2233 (J.McGarry)
38
3891
81
83

Total: 30

